Задание:
Найдите коэффицент b, если частное корней уравнения 5x^2+bx-60=0 равно -3 Если значиний коэффиц. Несколько, то в ответ запишите большее изних
Решение:
Находим корни уравнения: 5x²+bx-60=0D=b²+1200>0x₁=(-b-√ (b²+1200) /10x₂=(-b+√ (b²+1200) /10 т.к. x₁/x₂=-3, то (-b-√ (b²+1200) / (-b+√ (b²+1200)=-3-b-√ (b²+1200)=-3 (-b+√ (b²+1200) -4b+2√ (b²+1200)=02b-√ (b²+1200)=02b=√ (b²+1200) 4b²=b²+12003b²=1200b²=400b=-20Ответ: b=20
Знаете другой ответ?