ТутРешу.Ру

Диагонали равнобедренной трапеции взаимно перпендикулярны

Задание:

Диагонали равнобедренной трапеции взаимно перпендикулярны. Найдите площадь трапеции если средняя линия равна 7

Решение:

Пусть в трапеции ABCD AD, BC — основания, а диагонали пересекаются в точке O. В треугольнике AOD проведем высоту OH. Так как трапеция равнобедренная, AO=DO, и в прямоугольном треугольнике AOD острые углы равны 45 градусам. Тогда в прямоугольном треугольнике AOH один из углов равен 45 градусам, тогда и второй угол равен 45 градусам, тогда катеты равны, AH=OH. Аналогично проведем высоту OM в треугольнике BOC, получим, что BM=MO (треугольник BMO прямоугольный и равнобедренный). Тогда высота трапеции — HM — равна AH+BM — полусумме оснований — средней линии. Площадь равна произведению средней линии на высоту, тогда она равна 6*6=36.




Знаете другой ответ?

Отправить свой ответ