Задание:
Помогите пожалуйста с этой геометрией) Сторона AB ромба ABCD равна а, один из углов равен 60 градусов. Через сторону AB проведена плоскость альфа нарасстоянии a/2 от точки D. А) найти расстояние от точки C до плоскости альфа. Б) покажите на рисунке линейный угол двугранного угла DABM. M принадлежит альфа. В) Найдите синус угла между плоскостью ромба и плоскостью альфа. PS: если можно с чертежом)
Решение:
С чертежом нельзя Поскольку DC паралелльно АВ и лежит не в плоскости альфа, то она (DC) паралелльна плоскости альфа. Поэтому расстояние от плоскости альфа до любой точки этой прямой — величина постоянная. В том числе и расстояние от точек C и D, и по условию это a/2. Двугранный угол рисовать я не буду, в плоскости ромба надо провести перпендикуляр из точки D на АС (пусть это будет DE), длинна этого перпендикуляра DE=a*sqrt (3) /2 (то есть сторона AD, умноженная на синус 60 градусов). Кроме того, если опустить перпендикуляр на плоскость альфа из точки D (пусть это будет DF), и провести плоскость через три точки D, E, F, то эта плоскость перпендикулярна прямой АВ (АБ перпендикулярна 2 прямым этой плоскости — DE и DF), и FED — как раз и есть двугранный угол. Треугольник FED прямоугольный, гипотенуза DE, катет DF=a/2. То есть, если DE умножить на синус двугранного угла, то получится a/2. Отсюда синус это равен sqrt (3) /3.
Знаете другой ответ?