Задание:
Треугольник АВС-равнобедренный с осн. АВ. Биссектриса углов при осн. Пересекаются в точке D. Угол ADB=100 градусов. Найти уголС.
Решение:
В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны. Доказательство: Пусть ABC — равнобедренный треугольник (AC=BC) , AK и BL — его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB — биссектрисы треугольника ABC — равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC — равнобедренный треугольник (AC=BC) , AK и BL — его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
Знаете другой ответ?