ТутРешу.Ру

В трапеции АВСД с основанием ВС И АД точка О- точка пересечения…

Задание:

В трапеции АВСД с основанием ВС И АД точка О- точка пересечения диагоналей. S треугольника АОД=8, S тр. ВОС=2. Найдите площадьтрапеции.

Решение:

Sтрапеции=1/2 (AD+BC) h, где h — высота трапеции. Пусть a1=BC (меньшее основание) , a2=AD (большее основание) , h1 — высота треугольника BOC, h2 — высота треугольника AOD (обе высоты проведены на из точки О). Тогда Sтрапеции=1/2 (a1+a2) (h1+h2). Угол CAD=углу BCA (как накрест лежащие углы при параллельных прямых BC и AD и секущей AC) , Угол DBC=углу ADC (как накрест лежащие углы при параллельных прямых BC и AD и секущей BD) , значит, ΔBOC подобен ΔDOA (по двум углам). По теореме о соотношении площадей подобных треугольниковSΔAOD/SΔBOC=k^2 (k — коэффициент подобия).SΔAOD/SΔBOC=8/2=4 => k=2. Значит, a2/a1=h2/h1=2.h2=2h1, a2=2a1 => Sтрапеции=1/2*3a1*3h1=3a1*h1.SΔBOC=1/2*a1*h1=2 => a1*h1=4. Итак, Sтрапеции=3*4=12.




Знаете другой ответ?

Отправить свой ответ