ТутРешу.Ру

В треугольнике ABC, угол С=90 градусов, AC=8 см, угол ABC=45 градусов

Задание:

В треугольнике ABC, угол С=90 градусов, AC=8 см, угол ABC=45 градусов. Найдите а) AB Б) Высоту CD проведенную вгипотенузе

Решение:

Так как угол ABC=45 гр, а угол ACB=90 гр, то угол CAB=45 гр => треугольник ABC — равнобедренный => AC=BCПусть AC=BC=x. По теореме Пифагора: AB^2=AC^2+BC^2=x^2+x^2=2x^2=64 => x^2=32 => x=4√2 => AC=4√2 смТак как треугольник ABC — равнобедренный, то CD — еще и медиана => AD=DB=4В треугольнике CDB (угол CDB=90 гр) по теореме Пифагора: CD^2=BC^2 — BD^2=32 — 16=16 => CD=4 см. Ответ: а) 4√2 см; б) 4 см




Знаете другой ответ?

Отправить свой ответ