ТутРешу.Ру

Высота основания правильной треугольной пирамиды равна 4 см…

Задание:

Высота основания правильной треугольной пирамиды равна 4 см, а угол между боковым ребром и основанием равен 30 градусов. Найдите площадь полнойповерхности пирамиды

Решение:

Примем за X сторону основания, тогда по т. Пифагора x^2- x^2/4 (квадрат половины стороны)=16 (квадрату высоты) x=8/корень 3 Sосн.=1/2*x*h=16/корень 3 проведем высоту пирамиды при пересечении основания она даст нам точку Hопустим перпендикуляры из H и из вершины пир-да (S), тогда точка их пересечения будет Кугол SKH будет равен 30 (по условию) KH (как медиана)=2/3*h=8/3 рассмотрим тр.SHK cos30=HK/SK SK=8*2/3/корень 3=16/3/корень 3 теперь у нас есть высота боковой граниSбок. Гр.=1/2*x*SK=64/9Sпол.=3*64/9+16/корень 3=16/3 (4+ корень 3)




Знаете другой ответ?

Отправить свой ответ