Задание:
На турнир приезжают 9 шахматистов, каждые два из которых должны будут сыграть одну партию между собой. Организаторы хотят провести турнир в 3 городах втечение 4 дней. Важно, чтобы ежедневно все игроки играли одинаковое число партий, и никому из них не пришлось бы переезжать в другой город в течение игрового дня. Составьте расписание турнира, удовлетворяющее этим требованиям. (Если это невозможно сделать, то объясните, почему.)
Решение:
9 шахматистов, 3 города, по 3 шахматиста в городе. В день в каждом городе будет 3 партии, каждый шахматист в день будет играть по 2 партии. Всего должно быть сыграно 2*4*3=36 партий. Однако, нужно распределить шахматистов так, чтобы они играли по одному разу с каждым из соперников. Сделать это можно так, как указано в расписании (см. Вложение). Цифра в ячейке обозначает день, в который состоится партия между соотвествующими игроками. Например, ячейка, отмеченная желтым цветом означает, что партия между шахматистами 2 и 6 состояится на третий день турнира.
Знаете другой ответ?