Задание:
Найдите наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр. Назовите три последние цифры этого числа. Варианты ответов:
Решение:
Чтоб число делилось на 36 оно должно делиться на на 4 и на 9. В записи числа учавствуют все 10 цифр, значит сума его цифр равна 9*10:2=45 а следовательно єто число сложенное условленым образом будет делиться на 9. Значит остается расставить цифры числа так, чтобы оно делилось на 4 и было наименьшимчтоб число было наименьшим и при этом деллилось на 4, значит последние две цифры должны быть сложены из наиболее больших возможных цифр и давать двоцифровое число такое что делиться на 4, это число 96, иначе девятка попадет на старший разряд и у нас не будет наименьшего числадалее так число не может начинаться с 0, то первая цифра 1, потом 0, 2, и так расставляя порядке от наименьшего до наибольшего за исключением цифр 9 и 6, получим. Что искомое число 1023457896 а три его последние цифры 896
Знаете другой ответ?