ТутРешу.Ру

ПЛЛИИЗЗ! Найдите наибольшее значение функции у=(21-х) е

Задание:

ПЛЛИИЗЗ! Найдите наибольшее значение функции у=(21-х) е (в степени 20-х) на отрезке[19; 21]

Решение:

У=(21-х) е^ (20-х) y'=-1·е^ (20-х) — е^ (20-х) · (21-х) y'=-е^ (20-х) — е^ (20-х) · (21-х)=-е^ (20-х) (1+21-x)=-е^ (20-х) (22-x) y'=0-е^ (20-х) (22-x)=0-е^ (20-х) <022-x=0x=22 при х<22 y' <0 при х>22 y' >0В точке х=22 имеет место локальный минимум. Эта точка не входит в интервал [19; 21]Поскольку при при х<22 y' <0, то функция на этом интервале убывает и наибольшее ее значение будет на левом конце интервала, т.е. при х=19 у наиб=у (19)=(21-19) е^ (20-19)=2 е




Знаете другой ответ?

Отправить свой ответ