Задание:
Шахматная доска разрезана на 13 прямоугольников с целым числом клеток. Доказать, что они не могут все бытьразличными.
Решение:
Предположим что можно. Будем рассматривать прямоугольники вида m*nгде 1 <= m <= 8 1 <= n <= 8 причем прямоугольники будем считать равными с точностьюдо поворота на 90 градусов т е прямоугольники 2*3 и 3*2 считаем одинаковыми (подразумевается по условию задачи и следует из решения в противном случае такое замощение существует) Найдем площади замощения меньше которой не могут замостить 13 различных прямоугольников 1*1+1*2+1*3+1*4+2*2+1*5+1*6+2*3+1*7+1*8+2*4+2*5+2*6=64+2*6 <= S а на шахматнойдоске 64 клетки т е противоречие чтд
Знаете другой ответ?