(1) 2 cos²x=1+sin x2 — 2 sin²x=1+sin x2 sin²2+sin x — 1=0D=1+8=3²sin x=(1+3) / 4=1sin x=(1 — 3) / 4=- 1/2 (2) 2 sin²x — 5 sin x cos x+5 cos²x=12 sin²x — 5 sin x cos x+5 cos²x=sin²x+cos²xsin²x — 5 sin x cos x+4 cos²x=0 | /cos²xtg²x — 5 tg x+4=0 (tg x — 4) (tg x — 1)=0tg x=4, tg x=1 (3) sin x+cos x+sin 3x=0sin x+cos x+sin (2x+x)=0sin x+cos x+sin 2x cos x+sin x cos 2x=0sin x (1+cos 2x)+cos x (1+sin 2x)=0sin x (1+cos²x — sin²x)+cos x (1+sin 2x)=0sin x (2 cos²x)+cos x (1+sin 2x)=0cos x (2 sin x cos x+1+sin 2x)=0cos x (2 sin 2x+1)=0cos x=0x=± pi / 2+2 pi k, k in Z2 sin 2x+1=0sin 2x=- 1/22x=- pi / 6+(-1) ^m 2 pi m, m in Z x=- pi / 12+(-1) ^m pi m (5) √3 cos x — sin x=1 | /2 (√3/2) cos x — (1/2) sin x=1/2cos (pi/6) cos x — sin (pi/6) sin x=1/2cos (pi/6+x)=cos (pi/3) pi/6+x=± pi/3+2 pi k, k in Zx=± pi/3 — pi/6+2 pi k (4) √3 cos x — sin x=0√3 cos x=sin xtg x=√3x=pi / 3+pi k, k in Z