Найдем производныеf' (x)=(sin (4x) ' — (cos (2x) '=4cos (4x)+2sin (2x) g' (x)=(cos^2 (2x) '=2cos (2x)*(-sin (2x)*2=-2sin (4x) y' (x)=-sin (x) / (1-cos (x) — (1+cos (x)*sin (x) / (1-cos (x) ^2=-sin (x) / (1-cos (x) ^2*(1 — cos (x)+1+cos (x)=-2sin (x) / (1-cos (x) ^2y' (x)=-2cos (x) / (1-cos (x) ^2 -2sin (x)*sin (x)*(-2) / (1-cos (x) ^3=(-2cos (x)*(1-cos (x)+4sin^2 (x) / (1-cos (x) ^3=2 (2+cos (x) / (1-cos (x) ^2 корень — sqrty' (pi/4)=2*(2+sqrt (2) /2) / (1 — sqrt (2) /2) ^2=(4+sqrt (2) / (1+1/2 — sqrt (2)=(4+sqrt (2) / (3/2 — sqrt (2)=(4+sqrt (2)*(1,5+sqrt (2) / (2,25 — 2)=(6+1,5sqrt (2)+4sqrt (2)+2) / 0,25=32+22sqrt (2)