Пусть у нас дана геометрическая прогрессия b (n): b1,b2… Воспользуемся формулой для расчета суммы n-первых членов геометрической прогрессии: S (5)=b1 (q⁵-1) / (q-1) S (3)=b1 (q³ — 1) / (q — 1) По условию, S (5) — S (3)=1,5, то есть b1 (q⁵-1) / (q-1) — b1 (q³ — 1) / (q — 1)=(b1 (q⁵-1) — b1 (q³ — 1) / (q-1)=b1 (q⁵-1 — q³+1) / (q-1)=b1 (q⁵ — q³) / (q-1)=1,5 Теперь перейдем к другому условию. Выразим пятый и третий член через первый и знаменатель: b3=b1q²b5=b1q⁴b5=4b3b1q⁴=4b1q²Таким образом, приходим к системе: b1 (q⁵ — q³) / (q-1)=1,5b1q⁴=4b1q²Если нам удасться выкрутить данную систему, то получим первый член и знменатель, а там уже и до четвертого члена недалеко. Второе уравнение можно сократить на b1, получим: q⁴=4q²Теперь сокращаем на q²: q²=4Отсюда q=2 или q=-2. Но знаменатель по условию положителен, поэтому q=2. Теперь решить систему достаточно нетрудно. Подставим вместо q число 2. b1 (2⁵ — 2³) / (2 — 1)=1,5b1 (2⁵ — 2³)=1,5b1=1,5/24=0,0625 Теперь мы знаем знаменатель и первый член. Очень легко теперь ищется четвертый: b4=b1q³b4=0,0625*8=0,5Задача выполнена. Проверить, насколько верно она решена, я не в состоянии, скорее всего так, никак иначе.