76

Школьник в течение года каждый день решает хотя бы по одной задаче

trium 17 ноября 2024

Школьник в течение года каждый день решает хотя бы по одной задаче. Каждую неделю он решает не более 12 задач. Доказать, что найдется несколькопоследовательных дней, в которые он решает ровно 20 задач.

категория: алгебра

48

Будем отмечать каждый день количество задач решенных с 1 января по текущий день включительно. Получим 365 чисел. Если разность каких-либо двух из этих чисел равна 20, то утверждение задачи верно. Докажем, что такая пара найдется. Обозначим Ок количество чисел дающих при делении на 20 остаток к Очевидно О0+ О1+ О2+ О3+… + О18+ О19=365 поскольку каждое число хоть какой-нибудь остаток имеет. Далее, хотя бы одно из Ок не меньше 19 (иначе сумма Ок не больше 360) Возьмем под пристальное наблюдение числа с таким остатком. Те самые, которых не меньше 19. Разность любых двух из них делится на 20. Осталось показать, что разность хотя бы двух из них не превосходит, например, 32 (чтоб легче было считать). Тогда она равна 20, поскольку делится на 20. Допустим противное: разность любых двух последовательных больше 32. Тогда самое большое из них будет не меньше 18*32=576. Но поскольку решалось не более 12 задач в неделю, то число всех решенных за год задач не превосходит 52*12+12=546 Отрезков длиной 32 покрывающих промежуток (0,546) не более 18. А чисел с одинаковыми остатками не меньше 19. Значит хотя бы 2 их них попадут в один промежуток (принцип Дирихле)

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по алгебре

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...