61

Шар радиусом r переплавлен в конус…

lexapiter25 04 июня 2021

Шар радиусом r переплавлен в конус, боковая поверхность которого в 2 р больше площади его основания. Найдите высотуконуса.

категория: математика

34

Так как при переплавлении объем не меняется, то объем шара=объему конуса. Vшар=(4 пи*r^3) /3Vконус=(пи*h*R^2) /3, где h — высота, R — радиус основания. Sбок=пи*R*l (l — длина образующей) Soсн=пи*R^2 l выразим через высоту и радиус основания. l^2=R^2+h^2l=корень (R^2+h^2) Sбок=2Soснпи*R*l=2 пи*R^2 вместо l подставим корень (R^2+h^2) корень (R^2+h^2)*пи*R=2 пи*R^2 сократим пи и Rкорень (R^2+h^2)=2Rвозведем в квадрат: R^2+h^2=4R^23R^2=h^2R=h/корень 3 подставим это в формулу Vконус=(пи*h*R^2) /3 и приравним ее к Vшар=(4 пи*r^3) /3 (4 пи*r^3) /3=(пи*h*(h^2/3) /34 пи*r^3=пи*h^3/3 сократим пи и домножим на 312r^3=h^3h=(кубический корень 12)*rОтветкубический корень 12)*r

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по математике

ПОПУЛЯРНОЕ
sergej56778, 04 июня 2021
(4 1/6:3 1/3*0,2+5/6)*3+0,75=
Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...