80

Среди 2012 внешне неразличимых шариков половина имеет один вес…

joy23 01 июля 2021

Среди 2012 внешне неразличимых шариков половина имеет один вес, а вторая половина другой. Требуется выделить две кучки шариков так, чтобы количеcтвошариков в кучках было одинаковым, а массы кучек разными. Каким наименьшим числом взвешиваний на чашечных весах без гирь это можно сделать?

категория: математика

50

Задача может быть решена в 1 взвешивание. Разделим шарики на две кучки по 1006 шариков и взвесим их. Если неравенство — задача решена. Если в результате взвешивания получится равенство, то значит, что в каждой кучке по 503 шарика каждого вида (понятно, что равные по весу кучки из равного количества шариков должны быть одинаковы по их составу). Теперь разделим любую из этих кучек по 1006 шариков на две по 503 (взвешивать для этого ничего не надо). Полученные две кучки всегда имеют разный вес. Действительно, если предположить, что их вес может быть одинаковым, то в этом случае в обеих кучках должно быть равное количество шариков каждого вида, что невозможно, так как 503 не делится на 2.

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по математике

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...