57

Три мотоциклиста едут по кругу с постоянными, но разными скоростями…

guiper 13 сентября 2021

Три мотоциклиста едут по кругу с постоянными, но разными скоростями, первый и второй — по часовой стрелке, третий — против часовой стрелки, причем скорость второго больше, чем скорость первого. Они стартуют одновременно из точки. В момент, когда второй мотоциклист проехал ровно 8 кругов (т.е. в 8-й раз вернулся в точку), состоялась его 3-я встреча с первым мотоциклистом и 20-я встреча с третьим. Какая по счету встреча первого и третьего мотоциклистов произошла в этот момент? (Встречи отсчитываются после начала движения. Пребывание мотоциклистов в точке в начальный момент времени встречей не считается.)

категория: математика

35

Пусть х — скорость велосипедиста.т.к. до первой встречи велосипедист ехал 30+10=40 мин, а мотоциклист 10 мин, то скорость мотоциклиста будет в четыре раза больше, т.е. 4 х. Дальше выражаем минуты в часах.0,5 х — это расстояние, которое проехал велосипедист после первой встречи до второй встречи за полчаса.30+0,5 х — проехал мотоциклист после первой встречи до второй встречи. Это же расстояние равно 4 х*0,5 км. Уравнение: 30+0,5x=4x*0,530+0,5x=2x1,5x=30x=20 км/ч — скорость велосипедиста 4·20=80 км/ч — скорость мотоциклиста. Ответ: 20 и 80.

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по математике

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...