2. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. Доказательство. Пусть ABCD – данный параллелограмм. Проведем диагональ AC. Отметим на ней середину O. На продолжении отрезка DO отложим отрезок OB1, равный DO. По предыдущей теореме AB1CD – параллелограмм. Поэтому, прямая AB1 параллельна DC. Но через точку A можно провести только одну прямую, параллельную DC. Значит, прямая AB1 совпадает с прямой AB. Также доказывается, что BC1 совпадает с BC. Значит, точка С совпадает с С1. Параллелограмм ABCD совпадает с параллелограммом AB1CD. Следовательно, диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. Теорема док