В правильной четырехугольной пирамиде MABCD с вершиной M стороны основания равны 4, а боковые ребра 8. Найти площадь сечения пирамиды плоскостьюпроходящей через точку B и середину ребра МD параллельно прямой AC. (Если не сложно, то с рисунком, хотя и за решение буду очень рад)!
Искомое сечение — симметричный четырехугольник BPKLдиагонали PL , BK пересекаются под углом 90 градпо условиюстороны основания AB=BC=CD=AD=4 боковые ребра MA=MB=MC=MD=8 точка К — середина ребра MD; KD=MD /2=8/2=4ABCD — квадратдиагональ AC=BD=4√2 пересечение диагоналей точка F: BF=FD=BD/2=4√2 /2=2√2BK — медиана треугольника MBDдлина медианы BK=1/2 √ (2 BM^2+2 BD^2 — MD^2)=1/2 √ (2*8^2+2*(4√2) ^2 — 8^2)=4√2 по теореме косинусовcos KBD=(KD^2 — (BK^2+BD^2) / (-2*BK*BD)=(4^2 — (4√2) ^2+(4√2) ^2) / (-2*4√2*4√2)=3/4MF — высотатреугольник EBF — прямоугольныйBE=BF / cos KBD=2√2/3/4=8√2/3KE=BK — BE=4√2 -8√2/3=4√2/3 по теореме Пифагора EF=√ (BE^2 — BF^2)=√ (8√2/3) ^2 — (2√2) ^2)=2√14/2MF — высотатреугольник MFB — прямоугольныйпо теореме Пифагора MF=√ (MB^2 -BF^2)=√ (8^2- (2√2) ^2)=2√14ME=MF -EF=2√14 -2√14/2=2√14/2 треугольники MPL ~ MCA подобныеPL / AC=ME /MF; PL=AC*ME /MF=4√2*2√14/2 /2√14=2√2 площадь сечения (четырехугольника BPKL) Sс=PL*BK*sin
пользователи выбрали этот ответ лучшим
в избранное
ссылка
отблагодарить
Знаете другой ответ?
Другие вопросы по математике
Задумано несколько чисел (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску впорядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доску оставляется одно такие число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доску будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11 а) Приведите пример задуманных чисел, длякоторых на доске будет записан набор 1, 2, 3, 4, 5. Б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 20, 22? В) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 8,9,10,17,18,19,20,27,28,29,30,37,38,39,47.