48

Докажите, что число n^3-n при любом n делится на 6

lenem 14 октября 2024

Докажите, что число n^3-n при любом n делится на 6.

категория: алгебра

58

При n=2 имеем 8-2=6 утверждение вернополагаем, что оно вернопри n=mпокажем что оновыполняется и при n=m+1 (m+1) ^2- (m+1)=m^3-m+3m^2+3mпервые два слагаемых делятся на 6 по предположению, вторые делятся на 3, но m (m+1) число четное, т.к. четным являетсялибо m либо m+1. Следовательно два вторых слагаемых тоже делятся на 6. А значит и вся сумма делится на 6. Утверждение доказано

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по алгебре

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...