78

Докажите что среди членов последовательности

stas2153 12 сентября 2024

Докажите что среди членов последовательности (bn) нет отрицательных, еслиbn=n^2-100n+2700

категория: алгебра

54

Последовательность точек xn R на числовой оси называется сходящейся, если существует такая точка M 0, что для для любого как угодно малого положительного числа ε > 0 найдется для этой последовательности номер, зависящий от этого ε, такой, что для всех последующих номеров расстояние между членами числовой последовательности и точкой M0 будет меньше этого ε2,1) Это означает, что в любую как угодно малую окрестность точки М0 попадают все точки этой последовательности, начиная с некоторой (и тем самым вне этой окрестности остается лишь конечное число точек последовательности). Расстояние между точками числовой оси было определено в курсе аналитической геометрии. Точка М0 называется пределом последовательности xn, что обозначается символом. Если для заданной последовательности не существует точки М0, для которой было бы справедливо свойство (2,1), то последовательность называется расходящейся. Для точек числовой оси расстояние между двумя любыми ее точками определяется соотношением d (x, y)=| x — y |. Последовательность действительных чисел {x1, x2, x3,… ,xn,… } сходится к числу х, если Неравенство | xn — x | < ε можно записать в виде x — ε < xn < x+ε, n > N и n > N все точки числовой последовательности будут находиться в указанном интервале.

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по алгебре

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...