56

Найти минимум функции f (x)=2x3 — 9x2+12x– 8

davlet 03 ноября 2024

Найти минимум функции f (x)=2x3 — 9x2+12x– 8

категория: алгебра

52

f (x)=2x^3-9x^2+12x-8D (f)=Rf' (x)=6x^2-18x+12f' (x)=0, 6x^2-18x+12=0 x^2-3x+2=0 x1=1, x2=2Найдем значения производной слева и справа от найденных критических точекf' (0)=12>0- функция возрастает на (- бесконечность; 1]f' (1,5)=-1,5<0 — функция убывает на [1; 2]f' (3)=12>0 — функция возрастает на [2; + бесконечность) Значит точка (2; -4) — точка минимума, минимум функции у=-4

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по алгебре

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...