83

(x^2-5*x+1)*(x+ корень (x-2) >=0

rinaldo 14 декабря 2024

(x^2-5*x+1)*(x+ корень (x-2) >=0

категория: алгебра

63

(x^2-5x+1)*(x+sqrt (x-2) >=0Находим критические точки 1. x^2-5x+1=0D=21x1=(5-sqrt (21) /2x2=(5+sqrt (21) /22. x+sqrt (x-2)=0x=-sqrt (x-2) x^2=- (x-2) x^2+x-2=0D=b^2-4ac=9X1=-2X2=1Проверка показывает, что эти два корня побочные, то есть данное уравнение не имеет решения Итак, критические точки x1=(5-sqrt (21) /2 x2=(5+sqrt (21) /2 Методом интервалов определяем, что (x^2-5x+1)*(x+sqrt (x-2) >=0 при x>=(5+sqrt (21) /2

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по алгебре

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...