52

Докажите, что прямые…

fsy777 16 июня 2023

Докажите, что прямые, соединяющие вершину параллелограмма с серединами сторон, сходящихся в противоположной вершине, разбивают диагональ, соединяющуюдве другие вершины, на три равные части.

категория: геометрия

48

Действительно разбивают на три равные части. Обозначим параллелограм АВСД, его середины сторон соответственно А1, В1, С1, Д1. Вершину С соединяем с А1 и Д1, эти отрезки пересекут диагональ ВД в точках В2 и Д2. Проведем диагонаь АС и рассмотрим треугольники АСД и АСВ они равны, а отрезки СД1 и СА1 соответственно являются медианами своих треугольников, а точки В2 и Д2 точки пересечения медиан в соответствующих треугольниках. В равных треугольниках и точки пересечения мениан находятся соответственно на равных растояниях от соответствующих вершин. Тогда отрезок ДД2 равен ВВ2. Теперь нужно доказать, что ДД2=Д2В2. Докажем. Соединим точку Д1 с А1, а вершину А с точкой В1 пересечение этих отрезков обозначим точку А2. Расмотрим треугольники ДД1Д2 и АА1А2 они равны признаков много (паралелность, углы смежные) значит ДД2=Д1А2. А Д1А2=Д2В2 так ка противоположные стороны параллелограма. Отсюда вывод диагональ разделена на три равные части.

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по геометрии

ПОПУЛЯРНОЕ
Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...