51

К окружности с центром О проведите касательные…

k0p4en 24 мая 2023

К окружности с центром О проведите касательные AN и BN. Докажите, что AN=BN, а луч NO является биссектрисой углаANB.

категория: геометрия

76

Рассмотрим 2 треугольника АОN и ВОN. Они оба прямоугольные — углы ОАN и ВОN — прямые между касательными и радиусом окружности. Треугольники равны, т.к. оА=ОВ — радиусы одной окружности, ON — общая. Прямоугольные треугольники равны по гипотенузе и катету. А в равных треугольниках против равных сторон лежат равные углы. Против стороны ОА лежит угол АNО, а против стороны ОВ лежит угол ОNВ. Они равны, значит, ON — биссектриса угла АNВ. А если одни острые углы прямоугольного треугольника равны, то и другие равны. Значит, угол АОN равен углу ВОN. А в равных треугольниках против равных углов лежат равные стороны. Против угла АОN лежит АN, а против угла ВОN лежит BN. Значит АN равно ВN. Что и требовалось доказать.

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по геометрии

ПОПУЛЯРНОЕ
Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...