Смотрите, как лучше рассуждать, чтобы задача была понятной. Граней у тетраэдра четыре, поэтому у нас будет фигура с четыремя вершинами. Далее, все грани одинаковы, поэтому и получившаяся фигура имеет все равные ребра (и грани, конечно). Поэтому это — тоже тетраэдр. Дальше, центры боковых граней лежат в плоскости, параллельной основанию, которая проходит на высоте 1/3 от высоты пирамиды. Это следует из известного свойства точки пересечения медиан. Эта плоскость должна делить все апофемы в пропорции 2/1, считая от вершины. Стороны такого сечения равны 2/3 от длины рабра. А основание искомой фигуры получится, если в этом сечении соединить середины сторон. То есть это будет правильный треугольник со стороной 1/3 от ребра. Таким образом, нам надо найти площадь поверхности тетраэдра с ребром 2 (то есть площадь четырех правильных треугольников со стороной 2). 4*2*2*sin (60) /2=4*корень (3). Вроде так, проверьте