66

Точка касания окружности вписанной в ромб делит стороны ромба…

vovchan 14 июля 2023

Точка касания окружности вписанной в ромб делит стороны ромба на отрезки, разность которых равна 10 см. Вычеслите площадь ромба если длинна вписаннойокржности равна 24П

категория: геометрия

38

Пусть ABCD — ромб, в который вписана окружность касающаяся стороны AB в точке K. Пусть O — центр окружности, тогда OK — ее радиус. Длина окружности равна l=2pi*R=24pi => R=12 см.т.о. OK=12 см. Обозначим длину AK за x => по условию задачи KB=x+10. Рассмотрим треугольники AKO и OKB. Они подобны по первому признаку подобия. => AK: OK=OK: KB < => x/12=12/ (x+10) < => x^2+10x — 144=0Это уравнение имеет единственное подходящее решение: D=100+4*144=676 => x1=(-10+26) /2=8, x2=(-10-26) /2=-18 => AK=8 см => KB=8+10=18 см => сторона ромба равна 8+18=26 см. Высота ромба равна диаметру окружности, то есть 2R=24 cм. Площадь параллелограмма равна произведению стороны на высоту, опущенную на эту сторону => Для нашего ромба получаем, что площадь равна S=26*24=624 кв. См. Ответ: 624 кв. См.

пользователи выбрали этот ответ лучшим

Знаете другой ответ?
Другие вопросы по геометрии

ПОПУЛЯРНОЕ
Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее...